ON THE GENERIC SPLITTING OF QUADRATIC FORMS IN CHARACTERISTIC 2

AHMED LAGHRIBI

Abstract

In [8] and [9] Knebusch established the basic facts of generic splitting theory of quadratic forms over a field of characteristic not 2 . In [10], he generalized this theory to a field of characteristic 2 . This note is related to [10]. More precisely, we begin with a complete characterization of quadratic forms of height 1 (in this note we don't exclude anisotropic quadratic forms with radical of dimension at least 1). This allows us to extend the notion of degree in characteristic 2 . We prove some results on excellent forms and generic splitting tower of a quadratic form. Some results on quadratic forms of height 2 and degree 1 or 2 are given.

Let F be a field of characteristic not 2 . We associate to an anisotropic quadratic form φ of dimension ≥ 3 over F, the function field $F(\varphi)$ of the projective quadric defined by the equation $\varphi=0$. When φ is an anisotropic quadratic form of dimension 2 (resp. of dimension 1 or isotropic of dimension 2) we set $F(\varphi)=F(\sqrt{-\operatorname{det} \varphi})$ where $\operatorname{det} \varphi$ is the discriminant of $\varphi($ resp. $F(\varphi)=F)$. An anisotropic quadratic form of dimension at least 2 becomes clearly isotropic over its function field. In [8] Knebusch associated to a non-split quadratic form φ a sequence of extensions and quadratic forms, the so-called generic splitting tower of φ, as follows: $\varphi_{0}=\varphi_{a n}$ (the anisotropic part of φ), $F_{0}=F$ and inductively for $n \geq 1, F_{n}=F_{n-1}\left(\varphi_{n-1}\right)$ and $\varphi_{n}=\left(\left(\varphi_{n-1}\right)_{F_{n}}\right)_{a n}$. The height of φ is the smallest integer $h=\mathrm{h}(\varphi)$ such that $\operatorname{dim} \varphi_{h} \leq 1$. Clearly, for an anisotropic quadratic form φ of dimension at least 2 , we have $\mathrm{h}(\varphi)=\mathrm{h}\left(\varphi_{F(\varphi)}\right)+1$. In particular, an anisotropic quadratic form φ of dimension ≥ 2 is of height 1 if and only if $\operatorname{dim}\left(\varphi_{F(\varphi)}\right)_{\text {an }} \leq 1$. For any details on generic splitting theory of quadratic forms in characteristic not 2, we refer to Knebusch's papers [8], [9].

A quadratic form φ is called a Pfister neighbor if there exists an n-fold Pfister form π and a scalar $a \in F^{*}$ such that $\operatorname{dim} \varphi>2^{n-1}$ and $a \pi \cong \varphi \perp \psi$ for some quadratic form ψ, where \cong and \perp denote respectively the isometry and orthogonal sum of quadratic forms. The forms π and ψ are unique up to isometry. We call ψ the complementary form of φ and $\operatorname{dim} \pi-\operatorname{dim} \varphi$ the codimension of φ.

[^0]In general, for a given integer h it is very difficult to describe quadratic forms of height h. In characteristic not 2, Knebusch [8] and Wadsworth [16] have given independently a complete characterization of anisotropic quadratic forms of height 1. Such a quadratic form is a Pfister neighbor of codimension 0 or 1.

In [10] Knebusch generalized the generic splitting theory of quadratic forms to a field of characteristic 2 . The height and the generic splitting are defined in the same manner as in characteristic not 2 .

From now on, we assume that F is a field of characteristic 2 . We will investigate the generic splitting of quadratic forms over F. Along this note, we don't exclude quadratic forms with radical of dimension at least 1 . We begin with a complete characterization of anisotropic quadratic forms of height 1 . We use that characterization to extend the notion of degree in charactersitic 2 , and we prove some results on anisotropic quadratic forms of height 2 and degree 1 or 2 like those obtained in characteristic not 2 [4], [9], [6]. We extend the notion of excellent form and we give some results related to those forms. Some general results on the generic splitting tower of a quadratic form are given.

All basic facts and details on quadratic forms in characteristic 2 can be found in Baeza's book [2]. Let $[a, b]$ (resp. [a]) denote the quadratic form $a X^{2}+X Y+b Y^{2}$ (resp. the quadratic form $a X^{2}$).

Every quadratic form φ of dimension at least 1 can be written up to isometry:

$$
\begin{equation*}
\varphi=\left[a_{1}, b_{1}\right] \perp \cdots \perp\left[a_{r}, b_{r}\right] \perp\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right] \perp[0] \perp \cdots \perp[0] \tag{1}
\end{equation*}
$$

with $\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right]$ anisotropic.
Definition 1. Let φ be as in equation (1).
(1) If $\operatorname{dim} \varphi=2 r+s$, then φ is called a regular form or a form of type (r, s).
(2) A quadratic form of type $(r, 0)$ is called a nonsingular quadratic form.
(3) A quadratic form of type (r, s) with $s \geq 1$ is called a singular quadratic form.
(4) A quadratic form of type $(0, s)$ is called a totally singular quadratic form.
(5) The quadratic form $\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right] \perp[0] \perp \cdots \perp[0]$ is called the quasilinear part of φ.

Let $W_{q}(F)$ denote the Witt group of nonsingular quadratic forms, and let $W(F)$ denote the Witt ring of nonsingular bilinear symmetric forms. It is well known that $W_{q}(F)$ is a $W(F)$-module.

We denote by $\left\langle a_{1}, \cdots, a_{n}\right\rangle$ the bilinear form $\sum_{i=1}^{n} a_{i} X_{i} Y_{i}$. For an integer r and a quadratic form φ, we denote by $r \times \varphi$ the quadratic form $\underbrace{\varphi \perp \cdots \perp \varphi}_{r \text { times }}$. A quadratic form φ is called split if $\varphi \cong r \times \mathbb{H} \perp s \times[0]$ where $\mathbb{H}=[0,0]$ is the hyperbolic plane. If φ and ψ are quadratic forms, then $\varphi \sim \psi$ means that $\varphi \perp r \times \mathbb{H} \cong \psi \perp s \times \mathbb{H}$. We say that φ and ψ are similar if $\varphi \cong a \psi$ for some
$a \in F^{*}$. A nonsingular quadratic form φ is hyperbolic if $\varphi \cong r \times \mathbb{H}$. For a field extension K / F and a quadratic form φ over F, the quadratic form $\varphi \otimes K$ is denoted by φ_{K}.

An n-fold Pfister form is a quadratic form $\left\langle 1, a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n}\right\rangle \otimes\left[1, a_{n+1}\right]$ that we denote by $\left\langle\left\langle a_{1}, \cdots, a_{n+1}\right]\right]$. Let $P_{n} F$ (resp. $G P_{n} F$) denote the set of n-fold Pfister forms (resp. the set $\left\{\alpha \pi \mid \alpha \in F^{*}, \pi \in P_{n} F\right\}$). An n-fold Pfister form π is either anisotropic or hyperbolic [2, Chapter 4, Corollary 3.2]. The $W(F)$-submodule of $W_{q}(F)$ generated by n-fold Pfister forms is denoted by $I^{n} W_{q}(F)$. Let $\operatorname{Br}(F)$ denote the Brauer group of F.

Set $\wp(x)=x^{2}+x$ for $x \in F$ and $\wp(F)=\{\wp(x) \mid x \in F\}$. If φ is nonsingular, then the Clifford algebra $C(\varphi)$ is a central simple algebra over F, and the center $Z(\varphi)$ of the even Clifford algebra $C_{0}(\varphi)$ is a separable quadratic algebra over F. In this case, $Z(\varphi)=F\left(\wp^{-1}(\delta)\right)$ for some $\delta \in F$ and the Arf invariant $\triangle(\varphi)$ of φ is defined as the class of δ in $F / \wp(F)$. More precisely, if $\varphi \cong a_{1}\left[1, b_{1}\right] \perp \cdots \perp a_{r}\left[1, b_{r}\right]$ then $\triangle(\varphi)=b_{1}+\cdots+b_{r} \in F / \wp(F)$.

Let φ be a quadratic form of dimension $n \geq 1$ which is not isometric to $s \times[0]$, and let P_{φ} be the homogenous polynomial given by φ. In [13] it is shown that P_{φ} is reducible if and only if φ is either isometric to $\mathbb{H} \perp[0] \perp \cdots \perp[0]$ or isometric to $[a] \perp[0] \perp \cdots \perp[0]$ for some $a \in F^{*}$. If P_{φ} is irreducible, we define the function field $F(\varphi)$ of φ as the field of fractions of

$$
\frac{F\left[X_{1}, \cdots, X_{n}\right]}{\left(P_{\varphi}\right)}
$$

where $\left(P_{\varphi}\right)$ is the ideal of $F\left[X_{1}, \cdots, X_{n}\right]$ generated by P_{φ}. In particular, $F(\varphi)$ is well defined for an anisotropic quadratic form φ.

Quadratic forms of height 1 are as follows.
Theorem 2. Let F be a field of characteristic 2, and let φ be an anisotropic quadratic form, possibly singular, of dimension ≥ 1. Then, φ is of height 1 if and only if φ is one of the following types:
(1) $\operatorname{dim} \varphi=2$,
(2) $\varphi \in G P_{n} F$ for some integer $n \geq 1$,
(3) $\varphi \cong \psi \perp[c]$ for some anisotropic $\psi \in W_{q}(F)$ and $c \in F^{*}$ such that $\psi \perp c[1, \triangle(\psi)] \in G P_{m} F$ for some integer $m \geq 1$.

We will need frequently a generalization of the subform notion.
Definition 3. ([11]) Let $\psi=\left[a_{1}, b_{1}\right] \perp \cdots \perp\left[a_{r}, b_{r}\right] \perp\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right]$ be a quadratic form.
(1) We say that ψ is dominated by φ and denote $\psi \prec \varphi$ if there exists a form δ such that

$$
\varphi \cong\left[a_{1}, b_{1}\right] \perp \cdots \perp\left[a_{r}, b_{r}\right] \perp \xi_{1} \perp \cdots \perp \xi_{s} \perp \delta
$$

and for all $i \in\{1, \cdots, s\}$, we have $\xi_{i}=\left[c_{i}\right]$ or $\xi_{i}=\left[c_{i}, d_{i}\right]$ for some $d_{i} \in F$.
(2) We say that ψ is weakly dominated by φ if $a \psi \prec \varphi$ for some scalar $a \in F^{*}$.
(3) We say that ψ is a subform of φ and denote $\psi<\varphi$ if $\varphi \cong \psi \perp \mu$ for some quadratic form μ.

From Definition 3 we deduce the following remarks.
Remarks 4. (1) If ψ is weakly dominated by φ and if $F(\psi)$ is well defined, then $\varphi_{F(\psi)}$ is isotropic.
(2) If φ and ψ are nonsingular and ψ is dominated by φ, then ψ is a subform of φ.
(3) With the same notations and hypothesis as in Definition 3 (1) and if φ is nonsingular, then $\operatorname{dim} \xi_{i}=2$ for all $i \in\{1, \cdots, s\}$.

In [11], an analogue of the Cassels-Pfister subform theorem was proved.
Proposition 5. ([11, Proposition 3.4]) Let F be a field of characteristic 2, $\varphi \in$ $W_{q}(F)$ anisotropic and ψ be an anisotropic quadratic form, possibly singular, such that $\varphi_{F(\psi)}$ is hyperbolic. Then, ψ is weakly dominated by φ. In particular, $\operatorname{dim} \varphi \geq \operatorname{dim} \psi$.

Proposition 5 was obtained by using a result of Baeza concerning the norm theorem for nonsingular quadratic forms [3] and some results of [1].

The following Corollary is an immediate consequence of Proposition 5.
Corollary 6. Let F be a field of characteristic $2, \varphi \in W_{q}(F)$ anisotropic and π be an anisotropic Pfister form. If $\varphi_{F(\pi)}$ is hyperbolic, then there exists a bilinear form ρ such that $\varphi \cong \rho \otimes \pi$.

The following Lemma is well known, we recall it without proof.
Lemma 7. Let F be a field of characteristic $2, \varphi, \psi \in W_{q}(F)$ and $u_{1}, \cdots, u_{n}, v_{1}, \cdots, v_{n} \in F$ such that $\varphi \perp\left[u_{1}\right] \perp \cdots \perp\left[u_{n}\right] \cong \psi \perp\left[v_{1}\right] \perp$ $\cdots \perp\left[v_{n}\right]$. Then the sets $\left\{u_{1}, \cdots, u_{n}\right\},\left\{v_{1}, \cdots, v_{n}\right\}$ engender the same vector space over F^{2}.

We will need a generalization of the Witt cancellation.
Proposition 8. ([7, Proposition 1.2]) Let F be a field of characteristic $2, \eta \in$ $W_{q}(F)$ and φ, ψ be quadratic forms, possibly singular, such that $\varphi \perp \eta \cong \psi \perp \eta$. Then, $\varphi \cong \psi$.

By using Proposition 8 it is clear that a nonsingular quadratic form φ is hyperbolic if and only if $\varphi \sim 0$.

Proof of Theorem 2. To prove this theorem in the nonsingular case, we use the same idea as in characteristic not 2 but we proceed differently by using a function field argument. The singular case needs some observations, the point is that we can't follow directly the proof given in characteristic not 2 because Knebusch used a Witt cancellation argument which is not allowed in characteristic 2.

We recall a lemma.

Lemma 9. ([11, Lemma 3.1]) Let $\varphi=[a, b] \perp[y]$ be a quadratic form. We have: (1) If $z \in F$ is represented by φ, then either $[y] \cong[z]$ or there exists $r \in F$ such that $\varphi \cong[z, r] \perp[y]$.
(2) If φ is isotropic of type $(1,1)$, then $\varphi \cong \mathbb{H} \perp[y]$.
(3) If $a=y$, then $\varphi \sim[y]$.

Let φ be an anisotropic quadratic form of type (1), (2) or (3) as in Theorem 2. It is clear that $\mathrm{h}(\varphi)=1$ when $\operatorname{dim} \varphi=2$ or $\varphi \in G P_{n} F$ for some integer $n \geq 1$. Let's assume now that there exists a nonsingular quadratic form ξ and a scalar $c \in F^{*}$ such that $\varphi \cong \xi \perp[c]$ and $\pi:=\xi \perp c[1, \triangle(\xi)] \in G P_{m} F$ for some integer $m \geq 1$. Since φ is weakly dominated by π, it follows that $\pi_{F(\varphi)} \sim 0$ and $\xi_{F(\varphi)} \sim(c[1, \triangle(\xi)])_{F(\varphi)}$. In particular, $\varphi_{F(\varphi)} \sim(c[1, \triangle(\xi)] \perp[c])_{F(\varphi)}$. By Lemma 9 and Proposition 8, we deduce that $\left(\varphi_{F(\varphi)}\right)_{a n} \cong([c])_{F(\varphi)}$.

For the converse, we may assume that $\operatorname{dim} \varphi \geq 3$ and $\mathrm{h}(\varphi)=1$. Set $\varphi=$ $\left[a_{1}, b_{1}\right] \perp \cdots \perp\left[a_{r}, b_{r}\right] \perp\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right]$.
(1) If φ is nonsingular: Let k be the maximal integer such that there exists a k fold Pfister form ψ as a subform of φ. We have to prove $\operatorname{dim} \varphi=2^{k+1}$. Assume $\operatorname{dim} \psi<\operatorname{dim} \varphi$, and let ψ^{\prime} be a quadratic form such that $\varphi \cong \psi \perp \psi^{\prime}$. Since ψ is anisotropic and φ is nonsingular of dimension ≥ 4, it follows that $F(\psi)(\varphi)$ is well defined. However, $\varphi_{F(\psi)(\varphi)} \sim \psi_{F(\psi)(\varphi)}^{\prime} \sim 0$ and $\operatorname{dim} \psi^{\prime}<\operatorname{dim} \varphi$. Proposition 5 implies that $\psi_{F(\psi)}^{\prime} \sim 0$, and thus ψ is weakly dominated by ψ. Consequently, there exists a scalar $a \in F^{*}$ and a quadratic form η such that $\psi \cong a \psi \perp \eta$. The form $\psi \perp a \psi$ is a subform of φ and is similar to a $(k+1)$-fold Pfister form, contradicting the maximality of k. Hence, φ is similar to a Pfister form.
(2) If φ is singular: In this case we need some results on the isotropy problem, and the relation between the height and the type of a singular form.

Proposition 10. ([11, Proposition 1.1]) Let F be a field of characteristic 2, and let φ, ψ be anisotropic quadratic forms.
(1) If $\operatorname{dim} \varphi=2$ and $\operatorname{dim} \psi \geq 3$, then $\varphi_{F(\psi)}$ is anisotropic.
(2) If φ is nonsingular of dimension 2 and ψ is totally singular, then $\varphi_{F(\psi)}$ is anisotropic.

Proposition 11. Let φ be as above. Then, $s=1$.
Proof. Assume $s \geq 2$. Since $\mathrm{h}(\varphi) \leq 1$, it follows that

$$
\varphi_{F(\varphi)} \cong r \times \mathbb{H} \perp(s-1) \times[0] \perp[\alpha]
$$

for some $\alpha \in F(\varphi)$. Lemma 7 implies that the $F(\varphi)^{2}$-vector space spanned by c_{1}, \cdots, c_{s} is of dimension ≤ 1. In particular, the $F(\varphi)^{2}$-vector space spanned by c_{1}, c_{2} is of dimension ≤ 1, which means that the form $\left[c_{1}\right] \perp\left[c_{2}\right]$ becomes isotropic over $F(\varphi)$, a contradiction with Proposition 10.

We consider the following quadratic forms

$$
\mu:=\left[a_{1}, b_{1}\right] \perp \cdots \perp\left[a_{r}, b_{r}\right]
$$

and

$$
\nu:=\left[a_{1}, b_{1}\right] \perp \cdots \perp\left[a_{r}, b_{r}\right] \perp c_{1}[1, \triangle(\mu)] .
$$

Lemma 12. Let μ and ν be as above. Then, ν is anisotropic and $\nu_{F(\varphi)}$ is hyperbolic.

Proof. Since $\varphi_{F(\varphi)} \prec \nu_{F(\varphi)}$ and $\varphi_{F(\varphi)}$ contains r hyperbolic planes, it follows that $\nu_{F(\varphi)} \cong r \times \mathbb{H} \perp \xi$ for some 2-dimensional quadratic form ξ. By comparing Arf invariant we get $\xi \cong \mathbb{H}$. Therefore, $\nu_{F(\varphi)}$ is hyperbolic. The quadratic form ν is not hyperbolic because φ is anisotropic. Assume that ν is isotropic. Thus, $2 \leq \operatorname{dim} \nu_{a n} \leq \operatorname{dim} \nu-2<\operatorname{dim} \varphi$ and $\left(\nu_{a n}\right)_{F(\varphi)} \sim 0$, a contradiction with Proposition 5.

To complete the proof, let k be the maximal integer such that there exists a k fold Pfister form ψ as a subform of ν. We have to prove $\operatorname{dim} \nu=2^{k+1}$. Assume $\operatorname{dim} \nu>2^{k+1}$, and let ψ^{\prime} be a quadratic form such that $\nu \cong \psi \perp \psi^{\prime}$. Notice that $\operatorname{dim} \psi^{\prime} \leq \operatorname{dim} \nu-2<\operatorname{dim} \varphi$. Since ψ is anisotropic, φ is not totally singular and $c \neq 0$, it follows that $F(\psi)(\varphi)$ is well defined. However, $\nu_{F(\psi)(\varphi)} \sim \psi_{F(\psi)(\varphi)}^{\prime} \sim 0$. By Proposition 5, we have $\psi_{F(\psi)}^{\prime} \sim 0$, and thus ψ is weakly dominated by ψ. Hence, there exists $a \in F^{*}$ and a quadratic form η such that $\psi^{\prime} \cong a \psi \perp \eta$. The form $\psi \perp a \psi$ is a subform of ν and is similar to a $(k+1)$-fold Pfister form, contradicting the maximality of k. Hence, ν is similar to a Pfister form.

We recall a general result on the isotropy problem.
Proposition 13. ([11, Corollaire 3.3]) Let F be a field of characteristic 2, and let φ, ψ be anisotropic quadratic forms over F of dimension ≥ 2 such that φ is totally singular and ψ is not totally singular. Then, $\varphi_{F(\psi)}$ is anisotropic.

As a corollary we have:
Corollary 14. Let F be a field of characteristic 2, and let φ, ψ be anisotropic quadratic forms. Assume that ψ is not totally singular and φ is totally singular. Let $\left(F_{i}, \varphi_{i}\right)_{0 \leq i \leq \mathrm{h}(\varphi)}$ be the generic splitting tower of φ. Then, $F_{i}(\psi)$ is well defined for all $i \in\{0, \cdots, h(\varphi)\}$.

Proof. Set $\psi=\left[a_{1}, b_{1}\right] \perp \cdots \perp\left[a_{r}, b_{r}\right] \perp\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right]$. By assumption we have $r \geq 1$. Let $i \in\{0, \cdots, \mathrm{~h}(\varphi)\}$ and assume that $F_{i}(\psi)$ is not defined. Hence,

$$
\begin{equation*}
\psi_{F_{i}} \cong \mathbb{H} \perp[0] \perp \cdots \perp[0] \tag{2}
\end{equation*}
$$

In particular, $r=1$. If $s \geq 1$, then the F_{i}^{2}-vector space spanned by $\left\{c_{1}, \cdots, c_{s}\right\}$ is of dimension ≥ 1, a contradiction with Lemma 7 and equation (2). Hence, $\psi=\left[a_{1}, b_{1}\right]$ and $\psi_{F_{i}} \cong \mathbb{H}$. Since, φ_{j} is totally singular for all $j \in\{0, \cdots, \mathrm{~h}(\varphi)\}$, it follows from Proposition 10 (2) that $\psi_{F_{i}}$ is anisotropic, a contradiction.

In the following theorem, we give some general results on the generic splitting tower of a quadratic form.

Theorem 15. Let φ be an anisotropic quadratic form of height $h=\mathrm{h}(\varphi)$ and type (r, s), and let $\left(F_{i}, \varphi_{i}\right)_{0 \leq i \leq \mathrm{h}(\varphi)}$ be its generic splitting tower. When $s \geq 1$, we denote by η the quasilinear part of φ. Then, we have the following statements:
(1) If φ is totally singular and ψ is not a totally singular quadratic form, then $\mathrm{h}(\varphi)=\mathrm{h}\left(\varphi_{F(\psi)}\right)$.
(2) If $s \geq 2$, then there exists $j \in\{0, \cdots, \mathrm{~h}(\varphi)-1\}$ such that φ_{j} is of type $(0, s)$. More precisely, we have $\varphi_{j} \cong \eta_{F_{j}}$.
(3) If $r, s \geq 1$, then $\mathrm{h}(\eta)+1 \leq \mathrm{h}(\varphi) \leq \mathrm{h}(\eta)+r$.
(4) Assume that $r, s \geq 1$ and there exists $j \in\{0, \cdots, \mathrm{~h}(\varphi)-1\}$ such that φ_{j} is of type $\left(r_{j}, 1\right)$. Then $s=1$.
(5) Let $j \in\{0, \cdots, \mathrm{~h}(\varphi)\}$. Assume that φ_{j} is of type $\left(r_{j}, \epsilon\right)$ with $r_{j} \geq 1$. Then, for all $i \in\{0, \cdots, j\}$ the type of φ_{i} is $\left(r_{i}, \epsilon\right)$ for some integer r_{i}.
(6) If $s \geq 2$, then $\varphi_{\mathrm{h}(\varphi)-1}$ is totally singular of dimension 2 .
(7) If $s=1$, then for all $i \in\{0, \cdots, \mathrm{~h}(\varphi)\}$ the type of φ_{i} is $\left(r_{i}, 1\right)$ for some r_{i}.
(8) If $s=0$, then $\varphi_{\mathrm{h}(\varphi)-1}$ is similar to a Pfister form.

Proof. (1) Set $\psi=\left[a_{1}, b_{1}\right] \perp \cdots \perp\left[a_{r}, b_{r}\right] \perp\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right]$ and $\mu=\left[a_{1}, b_{1}\right]$. By Corollary 14 the fields $F_{i}(\psi), F_{i}(\mu)$ are well defined.
(i) If $\mu=\psi$, then by Proposition 10 we deduce that $\mu_{F_{i}}$ is anisotropic, and thus by Proposition $13\left(\varphi_{i}\right)_{F_{i}(\mu)}$ is anisotropic.
(ii) If $\operatorname{dim} \psi>\operatorname{dim} \mu$, then $\operatorname{dim} \psi \geq 3$. By the same argument as in the proof of Corollary 14 and by using $\operatorname{dim} \psi \geq 3$, we deduce that $F_{i}(\mu)(\psi)$ is well defined. The extension $F_{i}(\mu)(\psi) / F_{i}(\mu)$ is purely transcendental [13, Lemma 1]. If $\left(\varphi_{i}\right)_{F_{i}(\psi)}$ is isotropic, then $\left(\varphi_{i}\right)_{F_{i}(\mu)}$ is also isotropic, a contradiction with Proposition 13.
Since, $\left(\varphi_{i}\right)_{F_{i}(\psi)}$ is anisotropic for all $i \in\{0, \cdots, \mathrm{~h}(\varphi)\}$, it follows that $\mathrm{h}(\varphi)=$ $\mathrm{h}\left(\varphi_{F(\psi)}\right)$.
(2) Since $\operatorname{dim} \varphi \geq s \geq 2$, it follows that $\mathrm{h}(\varphi) \geq 1$. Let j be the smallest in $\{1, \cdots, \mathrm{~h}(\varphi)\}$ such that φ_{j} is of type $\left(r_{j}, s_{j}\right)$ with $s_{j}<s$. By the choice of j, the form $\eta_{F_{j-1}}$ is anisotropic. Lemma 7 implies that $\eta_{F_{j}}$ is isotropic. Since $F_{j}=F_{j-1}\left(\varphi_{j-1}\right)$, it follows from Proposition 13 that φ_{j-1} is totally singular. Therefore, by the minimality of j we conclude that φ_{j-1} is of type $(0, s)$, and thus by Lemma 7 we obtain $\varphi_{j-1} \cong \eta_{F_{j-1}}$.
(3) The statement is clear for $s=1$. So we may assume $s \geq 2$. By statement (2), there exists $j \in\{0, \cdots, \mathrm{~h}(\varphi)-1\}$ such that $\varphi_{j} \cong \eta_{F_{j}}$. Since φ is not totally singular and φ_{j} is totally singular, we obtain $j \geq 1$. Since φ_{j-1} is not totally singular, it follows that φ_{l} is not totally singular for all $l \in\{0, \cdots, j-1\}$. By statement (1) we conclude that $\mathrm{h}\left(\eta_{F_{j}}\right)=\mathrm{h}\left(\eta_{F_{j-1}}\right)=\cdots=\mathrm{h}(\eta)$. Since, $\mathrm{h}(\varphi) \geq \mathrm{h}\left(\varphi_{j-1}\right)=\mathrm{h}\left(\varphi_{j}\right)+1$ and $\eta_{F_{j}} \cong \varphi_{j}$, we conclude that $\mathrm{h}(\varphi) \geq \mathrm{h}(\eta)+1$. The second inequality is obvious.
(4) There is nothing to prove in the case $j=0$. So we may assume $j \geq 1$. Let $\left(r_{j-1}, s_{j-1}\right)$ be the type of φ_{j-1}. Since φ_{j} is of type $\left(r_{j}, 1\right)$ and $j \leq \mathrm{h}(\varphi)-1$, it follows that $r_{j}>0$, otherwise $\mathrm{h}\left(\varphi_{j-1}\right)=1$ and $j=\mathrm{h}(\varphi)$. In particular, $r_{j-1}>0$ and φ_{j-1} is not totally singular. Set $\varphi_{j-1}=\xi_{j-1} \perp \eta_{j-1}$ with $\xi_{j-1} \in W_{q}\left(F_{j-1}\right)$ and η_{j-1} a totally singular form over F_{j-1}. If $s_{j-1} \geq 2$, then η_{j-1} becomes isotropic over $F_{j-1}\left(\varphi_{j-1}\right)$, a contradiction with Proposition 13. Hence $s_{j-1}=1$. We finish the proof by a simple iteration argument.
(5) There is nothing to prove in the case $j=0$. So we may assume $j \geq 1$. Then, the type $\left(r_{j-1}, s_{j-1}\right)$ of φ_{j-1} satisfies $r_{j-1} \geq r_{j} \geq 1$ and $s_{j-1} \geq \epsilon$. In particular, φ_{j-1} is not totally singular. Set $\varphi_{j-1}=\xi_{j-1} \perp \eta_{j-1}$ with $\xi_{j-1} \in W_{q}\left(F_{j-1}\right)$ and η_{j-1} a totally singular form over F_{j-1}. If $s_{j-1}>\epsilon$, then η_{j-1} becomes isotropic over $F_{j}=F_{j-1}\left(\varphi_{j-1}\right)$, a contradiction with Proposition 13. Hence, $s_{j-1}=\epsilon$. We finish the proof by a simple iteration argument.
(6) Assume $s \geq 2$. By statement (2) there exists $j \in\{0, \cdots, \mathrm{~h}(\varphi)-1\}$ such that φ_{j} is of type $(0, s)$. In particular, $\varphi_{\mathrm{h}(\varphi)-1}$ is totally singular. It follows from Theorem 2 that $\varphi_{\mathrm{h}(\varphi)-1}$ is totally singular of dimension 2 .
(7) Obvious.
(8) If $s=0$. Then, all forms φ_{i} are nonsingular. By Theorem 2 the form φ_{h-1} is similar to a Pfister form.

The notion of a Pfister neighbor form was extended in characteristic 2 as follows.
Definition 16. ([11, Définition 1.2]) A quadratic form φ is a Pfister neighbor if there exists an n-fold Pfister form π such that $\operatorname{dim} \varphi>2^{n}$ and φ is weakly dominated by π. We call $\operatorname{dim} \pi-\operatorname{dim} \varphi$ the codimension of φ.

In [11, Proposition 3.1], it is shown that an anisotropic Pfister neighbor can't be totally singular, and if φ is a Pfister neighbor of π then π is unique up to isometry.

Theorem 2 allows us to extend the notion of degree of a quadratic form. So, let φ be a non-split quadratic form of height $h=\mathrm{h}(\varphi)$, and let $\left(F_{i}, \varphi_{i}\right)_{0 \leq i \leq h}$ be its generic splitting tower. Assume that $\operatorname{dim} \varphi_{0} \geq 2$. Then, $\mathrm{h}(\varphi) \geq 1$. The field F_{h-1} is called the leading field of φ [8]. Since φ_{h-1} is of height 1 , it follows from Theorem 2 that φ_{h-1} is either a Pfister neighbor of codimension 0 or 1 (in the sense of Definition 16), or a singular form of dimension 2. We have two possibilities:
(1) If φ_{0} is nonsingular, then φ_{h-1} is also nonsingular. Hence, $\varphi_{h-1} \cong a \pi$ for some $a \in F_{h-1}^{*}$ and $\pi \in P_{d} F_{h-1}$ for some integer d. In this case, we say that φ is of degree $d+1$. The form π is called the leading form of φ and is uniquely determined by φ (we use the same argument as in [8]).
(2) If φ_{0} is singular, then Theorem 15 implies that φ_{h-1} is also singular. In this case, we say that φ is of degree 0 . By Theorem $2 \varphi_{h-1}$ is of type $\left(r_{h-1}, 1\right)$ with $r_{h-1} \geq 1$ or of type $(0,2)$. When the type is $\left(r_{h-1}, 1\right)$, we conclude by Theorem 2 that $\varphi_{h-1} \cong \xi \perp[c]$ with $\xi \in W_{q}\left(F_{h-1}\right)$ and $c \in F_{h-1}^{*}$ such that $c \xi \perp[1, \triangle(\xi)]$ is a Pfister form that we call also the leading form of φ [8].

If φ is a split form (resp. $\operatorname{dim} \varphi_{a n}=1$), we set the degree of φ as ∞ (resp. we set the degree of φ as 0).

We denote by $\operatorname{deg}(\varphi)$ the degree of $\varphi, J_{n}(F)$ the set of all quadratic forms of degree at least n. Clearly, $G P_{n} F \subset J_{n+1}(F)$ and $W_{q}(F)=J_{1}(F)$.

As in [8], we have the following proposition.
Proposition 17. (1) Let $\tau \in P_{n} F$ anisotropic and $a \in F^{*}$. Let φ be a quadratic form of degree $\geq n+2$. Then, the quadratic form a $\tau \varphi$ is of degree $n+1$.
(2) For $n \geq 0$, the set $J_{n}(F)$ is closed under addition. In particular, $J_{n}(F)$ is a subgroup of $W_{q}(F)$ for $n \geq 1$, and $I^{n} W_{q}(F) \subset J_{n+1}(F)$.

Proof. We use the same proof as in [8, Theorem 6.3 and 6.4].
The following proposition allows us to define the complementary form of a Pfister neighbor in characteristic 2.
Proposition 18. Let $\xi \in W_{q}(F)$ and $c_{1}, \cdots, c_{s} \in F$ such that

$$
\varphi:=\xi \perp\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right]
$$

is a Pfister neighbor. Let $\delta \in W_{q}(F)$ and $d_{1}, \cdots, d_{s} \in F$ such that

$$
\xi \perp\left[c_{1}, d_{1}\right] \perp \cdots \perp\left[c_{s}, d_{s}\right] \perp \delta
$$

is similar to a Pfister form.
(1) If $F(\varphi)$ is well defined, then $\varphi_{F(\varphi)} \sim\left(\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right] \perp \delta\right)_{F(\varphi)}$.
(2) The quadratic form $\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right] \perp \delta$ is unique up to isometry.

Proof. Assume that $1 \in D_{F}(\varphi)$.
(1) The form $\pi:=\xi \perp\left[c_{1}, d_{1}\right] \perp \cdots \perp\left[c_{s}, d_{s}\right] \perp \delta$ is a Pfister form. Since $\pi_{F(\varphi)}$ is isotropic, it follows that

$$
\xi_{F(\varphi)} \sim\left(\left[c_{1}, d_{1}\right] \perp \cdots \perp\left[c_{s}, d_{s}\right] \perp \delta\right)_{F(\varphi)}
$$

In particular,

$$
\varphi_{F(\varphi)} \sim\left(\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right] \perp\left[c_{1}, d_{1}\right] \perp \cdots \perp\left[c_{s}, d_{s}\right] \perp \delta\right)_{F(\varphi)} .
$$

By Lemma 9 we have $\left[c_{i}, d_{i}\right] \perp\left[c_{i}\right] \sim\left[c_{i}\right]$. Hence,

$$
\varphi_{F(\varphi)} \sim\left(\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right] \perp \delta\right)_{F(\varphi)} .
$$

(2) Let $d_{1}^{\prime}, \cdots, d_{s}^{\prime} \in F$ and $\delta^{\prime} \in W_{q}(F)$ such that $\pi^{\prime}:=\xi \perp\left[c_{1}, d_{1}^{\prime}\right] \perp \cdots\left[c_{s}, d_{s}^{\prime}\right] \perp$ δ^{\prime} is another Pfister form. However, φ is a Pfister neighbor of π and π^{\prime}. By [11, Proposition 3.1] $\pi \cong \pi^{\prime}$. In particular,

$$
\pi \perp\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right] \cong \pi^{\prime} \perp\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right]
$$

By Lemma 9 and the Witt cancellation (Proposition 8) we get the desired conclusion
Definition 19. With the same notations and hypothesis as in Proposition 18, the quadratic form $\left[c_{1}\right] \perp \cdots \perp\left[c_{s}\right] \perp \delta$ is called the partial complementary form of φ.

Obviously if φ is a Pfister neighbor of type (r, s), then the partial complementary form φ^{\prime} of φ is of type $\left(r^{\prime}, s\right)$ for some integer r^{\prime}. In characteristic not $2, \varphi^{\prime}$ is known as the complementary form of φ.

In characteristic 2, we extend the notion of excellent form as follows.
Definition 20. Any form of dimension ≤ 1 is called excellent. A quadratic form of dimension ≥ 2 is called excellent if it is a Pfister neighbor and its partial complementary form is excellent.

In collaboration with Mammone [12] we extended in characteristic 2 a theorem of Hoffmann on the isotropy of quadratic forms [5]. Here is our result.

Theorem 21. ([12]) Let F be a field of characteristic 2, and let φ, ψ be anisotropic quadratic forms over F. Assume that:
(1) If φ is nonsingular, then $\operatorname{dim} \varphi \leq 2^{n}<\operatorname{dim} \psi$ for some integer $n \geq 1$.
(2) If φ is singular of type (r, s), then $2 r+2 s \leq 2^{n}<\operatorname{dim} \psi$ for some $n \geq 1$.

Then, φ remains anisotropic over $F(\psi)$.
As a corollary of Theorem 21, we have:
Corollary 22. Let φ be an anisotropic Pfister neighbor of $\pi \in P_{n} F$ and ψ be its partial complementary form. Then, we have $\left(\varphi_{F(\varphi)}\right)_{\text {an }} \cong \psi_{F(\varphi)}$ in the following cases:
(1) φ is nonsingular.
(2) φ is singular of type (r, s) such that the type $\left(r^{\prime}, s\right)$ of ψ satisfies $2 r^{\prime}+2 s \leq 2^{n}$.
(3) ψ is a Pfister neighbor.

Proof. Let (r, s) be the type of φ and $\left(r^{\prime}, s\right)$ be the type of ψ. We have $\operatorname{dim} \psi=$ $2 r^{\prime}+s$ and $\varphi_{F(\varphi)} \sim \psi_{F(\varphi)}$ (Proposition 18). Since $\operatorname{dim} \varphi>2^{n}$, it follows that $\operatorname{dim} \psi<2^{n}$. The form $\varphi_{F(\pi)}$ is isotropic. Hence, $F(\pi)(\varphi) / F(\pi)$ is a purely transcendental extension [11, Corollaire 3.4].

- Assume that φ satisfies the case (1) or (2). If $\psi_{F(\varphi)}$ is isotropic, then $\psi_{F(\pi)}$ is isotropic, a contradiction with Theorem 21. Hence $\psi_{F(\varphi)}$ is anisotropic.
- Assume that ψ is a Pfister neighbor of a k-fold Pfister form ρ. Since $\operatorname{dim} \psi>2^{k}$, we obtain $k<n$, that means, $\operatorname{dim} \rho<\operatorname{dim} \pi$. If $\psi_{F(\varphi)}$ is isotropic, then $\psi_{F(\pi)}$ is isotropic. Consequently, $\rho_{F(\pi)}$ is isotropic and thus hyperbolic, a contradiction with Proposition 5.

Definition 23. For a field extension K / F, we say that a quadratic form φ over K is defined over F if there exists a quadratic form ψ over F such that $\varphi \cong \psi_{K}$.

For an excellent quadratic form, we prove a general result which generalizes a known result of Knebusch on such a form in characteristic not 2, and we prove that an anisotropic singular excellent form has a particular type.

Proposition 24. Let φ be an anisotropic excellent form of dimension ≥ 3, and let $\left(F_{i}, \varphi_{i}\right)_{0 \leq i \leq \mathrm{h}(\varphi)}$ be its generic splitting tower.
(1) If φ is singular, then φ is of type $(r, 1)$ for some integer $r>0$. In particular, all quadratic forms φ_{i} are of type $\left(r_{i}, 1\right)$.
(2) All quadratic forms φ_{i} are defined over F.

Proof. (1) Let ψ be the partial complementary form of φ. Since φ is a Pfister neighbor, it follows from [11, Proposition 3.1] that φ is not totally singular. We will proceed by induction on $\mathrm{h}(\varphi)$. If $\mathrm{h}(\varphi)=1$, then the result is an immediate consequence of Theorem 2. Now assume that the result is true for any anisotropic excellent singular form of height $<\mathrm{h}(\varphi)$. By Corollary 22 (3) $\left(\varphi_{F(\varphi)}\right)_{a n} \cong \psi_{F(\varphi)}$. Hence, $\psi_{F(\varphi)}$ is excellent of height $\mathrm{h}(\varphi)-1$. Since $\psi_{F(\varphi)}$ is singular, we get by the induction hypothesis that $\psi_{F(\varphi)}$ is of type $\left(r^{\prime}, 1\right)$ for some integer r^{\prime}. If $r^{\prime}=0$, then $\mathrm{h}(\varphi)=1$ and the result is true by Theorem 2. If $r^{\prime}>0$, then by Theorem 15 (5) φ is of type $(r, 1)$ for some integer $r>0$.
(2) A consequence of Proposition 18 and Corollary 22 (3).

Now we give some partial results on quadratic form of height 2 and degree 1 or 2.

Theorem 25. Let F be a field of characteristic 2, and let φ be an anisotropic nonsingular quadratic form over F.
(1) φ is of height 2 and degree 1 if and only if φ is one of the following types:

- φ is excellent of codimension 2;
- φ is of dimension 4 with non trivial Arf invariant.
(2) φ is excellent of height and degree 2 if and only if $\varphi_{F(\varphi)}$ is not hyperbolic and $\left(\varphi_{F(\varphi)}\right)_{\text {an }} \in G P_{1} F(\varphi)$ is defined over F.
(3) φ is of height and degree 2 whose leading form is not defined over F if and only if φ is an Albert form, i.e. a nonsingular quadratic form of dimension 6 with trivial Arf invariant.

The characterization of anisotropic quadratic forms of height 2 and degree 1 or 2 is complete in characteristic not 2 . Here, we can't settle the case when φ is of height and degree 2 such that $\left(\varphi_{F(\varphi)}\right)_{a n}$ is not defined over F and the leading form of φ is defined over F.

Proposition 26. Let F be a field of characteristic 2 , and let φ be an anisotropic nonsingular quadratic form of dimension 4 with non trivial Arf invariant, or an Albert form. We have the following statements:
(1) If $\operatorname{dim} \varphi=4$, then φ is of height 2 , degree 1 and $\left(\varphi_{F(\varphi)}\right)_{\text {an }}$ is not defined over F.
(2) If φ is an Albert form, then φ is of height and degree 2 with leading form not defined over F. In particular, $\left(\varphi_{F(\varphi)}\right)_{\text {an }}$ is not defined over F.

Proof. (1) Since $\operatorname{dim} \varphi=4$ and $\triangle(\varphi) \neq 0$, we have $\varphi \notin G P_{1} F$ and $\operatorname{dim}\left(\varphi_{F(\varphi)}\right)_{a n}=$ 2. Hence $\mathrm{h}(\varphi)=2$ and $\operatorname{deg}(\varphi)=1$. Assume that $\left(\varphi_{F(\varphi)}\right)_{\text {an }}$ is defined over F and let $\alpha \in F^{*}$ such that $\varphi_{F(\varphi)} \sim(\alpha[1, \triangle(\varphi)])_{F(\varphi)}$. Hence, $\mu:=\varphi \perp$ $\alpha[1, \triangle(\varphi)]$ is hyperbolic over $F(\varphi)$. Let ρ be a 3-dimensional quadratic form
dominated by φ. Clearly, ρ is a Pfister neighbor of some 1-fold Pfister form $\tau \in$ $P_{1} F$. The forms $\varphi_{F(\rho)}$ and $\rho_{F(\tau)}$ are isotropic, thus the extensions $F(\rho)(\varphi) / F(\rho)$ and $F(\tau)(\rho) / F(\tau)$ are purely transcendentals [11, Corollaire 3.4]. Consequently, $\mu_{F(\tau)} \sim 0$. The form μ is not hyperbolic because φ is anisotropic. By Corollary 6 we deduce that μ is isotropic and $\mu_{a n}$ is similar to τ. Therefore, $\tau_{F(\varphi)} \sim 0$. By Proposition 5φ is similar to τ, a contradiction.
(2) Assume that φ is an Albert form. By Theorem 2, we have $\mathrm{h}(\varphi) \geq 2$. Since $\Delta(\varphi)=0$, we conclude that $\left(\varphi_{F(\varphi)}\right)_{a n} \in G P_{1} F(\varphi)$. Hence, $\mathrm{h}(\varphi)=2$. Let $\tau \in P_{1} F(\varphi)$ be the leading form of φ. Assume that τ is defined over F. Consequently, $\varphi_{F(\tau)(\varphi)} \sim 0$. If $\varphi_{F(\tau)}$ is anisotropic, then $\varphi_{F(\tau)}$ is of height 1 , a contradiction with Theorem 2. Hence $\varphi_{F(\tau)}$ is isotropic and thus $F(\tau)(\varphi) / F(\tau)$ is a purely transcendental extension [11, Corollaire 3.4]. We conclude that $\varphi_{F(\tau)} \sim 0$ and by Corollary 6φ is isotropic, a contradiction.

Proposition 27. Let F be a field of characteristic 2, and let $\varphi, \eta \in W_{q}(F)$ be anisotropic forms such that $\left(\varphi_{F(\varphi)}\right)_{\text {an }} \cong \eta_{F(\varphi)}$ and $\operatorname{dim} \eta=2$ or $\eta \in G P_{1} F$. Then, φ is an excellent form of partial complementary form η.
Proof. Set $\triangle=\triangle(\varphi)$ and $\mu=\varphi \perp \eta$. We have $2 \operatorname{dim} \varphi>\operatorname{dim} \mu$. The form μ is not hyperbolic because φ is anisotropic, and we have $\mu_{F(\varphi)} \sim 0$. We have to prove that μ is similar to an anisotropic Pfister form.
(1) If $\operatorname{dim} \eta=2$: In this case $\triangle \neq 0$. Let $\alpha \in F^{*}$ such that $\eta=\alpha[1, \Delta]$.
(1.1) Assume that μ is isotropic. Hence,

$$
\varphi \cong e[1, f] \perp \varphi^{\prime}
$$

and

$$
\alpha[1, \Delta] \cong e[1, \triangle]
$$

for some quadratic form φ^{\prime} and $e, f \in F^{*}$. It follows that

$$
\begin{equation*}
\left(\varphi^{\prime} \perp e[1, f+\triangle]\right)_{F(\varphi)} \sim 0 \tag{3}
\end{equation*}
$$

The forms $\varphi^{\prime} \perp e[1, f+\triangle]$ and φ have the same dimension.

- If $\varphi^{\prime} \perp e[1, f+\triangle]$ is isotropic, it follows from Proposition 5 and equation (3) that $\varphi^{\prime} \perp e[1, f+\triangle] \sim 0$. Since φ^{\prime} is anisotropic, we deduce $\varphi^{\prime} \cong e[1, f+\triangle]$. Hence φ is isotropic, a contradiction.
- If $\varphi^{\prime} \perp e[1, f+\Delta]$ is anisotropic, then Proposition 5 implies that φ and $\varphi^{\prime} \perp e[1, f+\triangle]$ are similar. In particular, $\varphi_{F(\varphi)} \sim 0$, a contradiction.

Hence, μ is anisotropic.
(1.2) Assume that $\mu_{F(\mu)}$ is not hyperbolic and let $\mu_{1}=\left(\mu_{F(\mu)}\right)_{a n}$. As in case (1.1) we have $\varphi_{F(\mu)} \cong \beta \mu_{1}$ for some $\beta \in F(\mu)^{*}$, and thus $\operatorname{dim} \varphi<\operatorname{dim} \mu$ and $\varphi_{F(\varphi)(\mu)} \sim 0$. Therefore by Proposition $5 \varphi_{F(\varphi)} \sim 0$, a contradiction.

Hence, $\mu_{F(\mu)}$ is hyperbolic, and thus μ is similar to a Pfister form.
(2) If $\operatorname{dim} \eta=4$: We may assume $\eta \in P_{1} F$. Set $\eta=[1, y] \perp z[1, y]$.
(2.1) If μ is isotropic, then

$$
\varphi \cong r[1, x] \perp \varphi^{\prime \prime}
$$

and

$$
\eta \cong r[1, y] \perp r z[1, y]
$$

for some quadratic form $\varphi^{\prime \prime}$ and $r \in F^{*}$. In particular,

$$
\left(\varphi^{\prime \prime} \perp r[1, x+y] \perp r z[1, y]\right)_{F(\varphi)} \sim 0
$$

Since φ is anisotropic, it follows that $\varphi^{\prime \prime} \perp r[1, x+y] \perp r z[1, y]$ is not hyperbolic.
(i) If $\varphi^{\prime \prime} \perp r[1, x+y] \perp r z[1, y]$ is anisotropic, then Proposition 5 implies that

$$
\varphi^{\prime \prime} \perp r[1, x+y] \perp r z[1, y] \cong u \varphi \perp \xi
$$

for some 2 -dimensional form ξ and $u \in F^{*}$. By comparing Arf invariant we deduce that $\xi \cong \mathbb{H}$, a contradiction.
(ii) If $\varphi^{\prime \prime} \perp r[1, x+y] \perp r z[1, y]$ is isotropic, then $\operatorname{dim}\left(\varphi^{\prime \prime} \perp r[1, x+y] \perp\right.$ $r z[1, y])_{a n} \leq \operatorname{dim} \varphi$. By Proposition 5 we get that φ is similar to $\left(\varphi^{\prime \prime} \perp\right.$ $r[1, x+y] \perp r z[1, y])_{a n}$. In particular, $\varphi_{F(\varphi)} \sim 0$, a contradiction.

Hence, μ is anisotropic.
(2.2) If $\varphi_{F(\mu)}$ is isotropic, then $F(\mu)(\varphi) / F(\mu)$ is a purely transcendental extension [11, Corollaire 3.4]. Hence, $\mu_{F(\mu)} \sim 0$ and thus μ is similar to a Pfister form.
(2.3) If $\mu_{F(\mu)}$ is not hyperbolic, then by case (2.2) $\varphi_{F(\mu)}$ is anisotropic. Let $\mu_{1}=\left(\mu_{F(\mu)}\right)_{a n}$. We have $\left(\mu_{1}\right)_{F(\mu)(\varphi)} \sim 0$ and $\operatorname{dim} \mu_{1} \leq \operatorname{dim} \varphi+2$. By the same arguments as in cases (i) and (ii) we obtain that $\varphi_{F(\mu)}$ is similar to μ_{1}. In particular, $\operatorname{dim} \varphi<\operatorname{dim} \mu$ and $\varphi_{F(\varphi)(\mu)} \sim 0$. It follows from Proposition 5 that $\varphi_{F(\varphi)} \sim 0$, a contradiction.

Hence, $\mu_{F(\mu)}$ is hyperbolic and thus μ is similar a Pfister form.
Proof of Theorem 25. Let φ be an anisotropic nonsingular quadratic form. Set $\triangle=\triangle(\varphi)$.
(1) If φ is excellent of codimension 2 , it follows from Corollary 22 (3) that $\mathrm{h}(\varphi)=2$ and degree 1. By Proposition 26, an anisotropic quadratic form of dimension 4 with non trivial Arf invariant is of height 2 and degree 1. For the converse, assume that φ is of height 2 and degree 1 . In particular, $\operatorname{dim} \varphi \geq 4$ and $\operatorname{dim}\left(\varphi_{F(\varphi)}\right)_{\text {an }}=2$. Let $\alpha \in F(\varphi)^{*}$ such that $\varphi_{F(\varphi)} \sim \alpha[1, \triangle]$.
(1.1) If $\alpha[1, \Delta]$ is defined over F, then we get by Proposition 27 that φ is excellent of codimension 2 .
(1.2) If $\alpha[1, \Delta]$ is not defined over F. We have

$$
C(\varphi)_{F(\varphi)}=[\triangle, \alpha) \in \operatorname{Br}(F(\varphi))
$$

Assume that $\operatorname{dim} \varphi \geq 6$. By Proposition 26 (2) φ is not an Albert form. However, by the reduction index theorem [13, Theorem 4] the Schur index of the algebra $C(\varphi)$ is less or equal to 2 . Let $\tau=[1, r] \perp s[1, r] \in P_{1} F$ such that $C(\varphi)=$ $C(\tau) \in \operatorname{Br}(F)$. Clearly

$$
([1, r] \perp s[1, r])_{F(\varphi)} \cong[1, \triangle] \perp \alpha[1, \triangle] .
$$

Thus $([1, r+\triangle] \perp s[1, r])_{F(\varphi)} \sim \alpha[1, \triangle]$. By [11, Théorème 1.3] the form $[1, r+\triangle] \perp s[1, r]$ is isotropic. Consequently, $\alpha[1, \triangle]$ is defined over F, a contradiction. Hence, $\operatorname{dim} \varphi=4$.
(2) A consequence of Proposition 27 and Corollary 22 (3).
(3) The sufficient condition is a consequence of Proposition 26 (2). For the necessary condition, we follow the proof of Kahn in characteristic not 2 [6] by using the reduction index theorem in characteristic 2 [13].

Let us finish this note with some questions. The first one is related to the case that we don't settle in Theorem 25.

Question 28. Let φ be an anisotropic quadratic form of height and degree 2 and let $\tau \in P_{1} F$ anisotropic such that $\left(\varphi_{F(\varphi)}\right)_{\text {an }}$ is similar to τ but not defined over F. Is φ of dimension 8?

It is well known that Question 28 has a positive answer in characteristic not 2 [4, 1.6].

Question 29. Let φ be an anisotropic form, and let $\left(F_{i}, \varphi_{i}\right)_{0 \leq i \leq \mathrm{h}(\varphi)}$ be its generic splitting tower. Assume that φ is of type (r, ϵ) such that $\epsilon \leq 1$ and all forms φ_{i} are defined over F. Is φ an excellent form?

More precisely we ask the following question.
Question 30. Let φ be an anisotropic form. Assume that φ is of type (r, ϵ) such that $\epsilon \leq 1$ and $\left(\varphi_{F(\varphi)}\right)_{\text {an }}$ is defined over F. Is φ a Pfister neighbor?

Proposition 27 gives a positive answer to Question 29 when $\operatorname{dim}\left(\varphi_{F(\varphi)}\right)_{\text {an }}=2$ or $\left(\varphi_{F(\varphi)}\right)_{a n} \in G P_{1} F(\varphi)$.

To formulate Question 30 when φ is a singular form with radical of dimension ≥ 2, it is necessary to add other hypothesis on the type of φ. In fact, Proposition 31 gives an example of an anisotropic singular quadratic form φ such that $\left(\varphi_{F(\varphi)}\right)_{\text {an }}$ is defined over F but φ is not a Pfister neighbor.

Proposition 31. Let F be a field of characteristic 2 , n be an integer such that $2+2 n$ is not a power of 2 , and $X, Y, Z_{1}, \cdots, Z_{n}$ some variables over F. Let $\varphi=$ $[X, Y] \perp\left[Z_{1}\right] \perp \cdots \perp\left[Z_{n}\right]$ and $K=F\left(X, Y, Z_{1}, \cdots, Z_{n}\right)$. Then, $\left(\varphi_{K(\varphi)}\right)_{\text {an }}$ is defined over K but φ is not a Pfister neighbor. More precisely, $\left(\varphi_{K(\varphi)}\right)_{\text {an }}=$ $\left(\left[Z_{1}\right] \perp \cdots \perp\left[Z_{n}\right]\right)_{K(\varphi)}$.

Proof. Let $\eta=\left[Z_{1}\right] \perp \cdots \perp\left[Z_{n}\right]$. Assume that φ is a Pfister neighbor over K. A simple computation implies that $2+2 n$ is a power of 2 , a contradiction. It follows from Proposition 13 that $\eta_{K(\varphi)}$ is anisotropic and thus $\varphi_{K(\varphi)} \cong \mathbb{H} \perp \eta_{K(\varphi)}$, as desired.

REFERENCES

[1] R. Baeza, Ein Teilformensatz für quadratische Formen in Charakteristik 2, Math. Z. 135 (1974), 175-184.
[2] R. Baeza, Quadratic forms over semilocal rings, Lect. Notes Math. vol. 665, Berlin Heidelberg New York: Springer 1978.
[3] R. Baeza, The norm theorem for quadratic forms over a field of characteristic 2, Comm. Algebra (5) 18 (1990), 1337-1348.
[4] R. W. Fitzgerald, Quadratic forms of height two, Trans. Amer. Math. Soc. 283 (1984), 339-351.
[5] D. W. Hoffmann, Isotropy of quadratic forms over the function field of a quadric, Math. Z. 220 (1995), 461-476.
[6] B. Kahn, Formes quadratiques de hauteur et de degré 2, Indag. Math. 7 (1996), 47-66.
[7] M. Knebusch, Specialization of quadratic and symmetric bilinear forms, and a norm theorem, Acta Arithmetica XXIV (1973), 279-299.
[8] M. Knebusch, Generic splitting of quadratic forms I, Proc. London. Math. Soc. 33 (1976), 65-93.
[9] M. Knebusch, Generic splitting of quadratic forms II, Proc. London Math. Soc. 34 (1977), 1-31.
[10] M. Knebusch, Specialization of quadratic forms in characteristic 2, Talk in the Conference "Quadratische und Hermitische Formen", Oberwolfach, 1999.
[11] A. Laghribi, Certaines formes quadratiques de dimension ≤ 6 et corps des fonctions en caractéristique 2, to appear in Israel J. Math.
[12] A. Laghribi, P. Mammone, Isotropie d'une forme quadratique sur le corps des fonctions d'une quadrique projective en caractéristique 2, Preprint 1999.
[13] P. Mammone, J.-P. Tignol, A. Wadsworth, Fields of characteristic 2 with prescribed u-invariant, Math. Ann. 290 (1991), 109-128.
[14] A. S. Merkurjev, Algèbres simples et formes quadratiques, In Russian: Izv. Akad. Nauk SSSR, 55 (1991), 218-224. English translation: Math. USSR Izv., 38 (1992), 215-221.
[15] W. Scharlau, Quadratic and Hemitian forms, (Grundlehren Math. Wiss. Bd. 270) Berlin, Heidelberg, New York, Tokyo: Springer 1985.
[16] A. R. Wadsworth, Noetherian pairs and function fields of quadratic forms, Doctoral Dissertation, University of California, 1972.

Faculté Jean Perrin, Rue Jean Souvraz - SP 18, 62307 Lens, France
E-mail address: laghribi@euler.univ-artois.fr

[^0]: 1991 Mathematics Subject Classification: 11E04, 11E81
 Keywords and Phrases: Quadratic Form, Function Field of a Quadric, Generic Splitting of a Quadratic Form, Pfister Form, Pfister Neighbor.

